Tente ao menos ser elegante

Outro dia desses, pensando sobre software, arquitetura de sistemas, gente e a natureza falível de tudo isso, enquanto tomava a primeira xícara de café do dia, recém coado, me lembrei de um trecho do livro ZeroMQ, do Pieter Hintjens:

Most people who speak of “reliability” don’t really know what they mean by it. We can only define reliability in terms of failure. That is, if we can handle a certain set of well defined and understood failures, we are reliable with respect to those failures. No more, no less.

ZeroMQ: Messaging for Many Applications, Pieter Hintjens, page 141.

O que eu, na modéstia do meu intelecto, reduzi à frase:

Um sistema é tão confiável quanto foi preparado para ser.

À qual, eu certamente poderia acrescentar “nem mais, nem menos” ao final. Mas não tenho tanta certeza de que “nem menos” é tão verdade assim. Principalmente, em se tratando de sistemas distribuídos; ainda que se tenha um projeto super minucioso. Vou deixar com está.

Foi daí que saiu a motivação de fazer este post. Porque este é o tipo de assunto que fica subentendido em muitas conversas que temos em nosso dia a dia, projetando, implementando e mantendo software em produção. Parece que todo mundo sabe do que está falando, presume que a pessoa ao lado sabe do que está falando e que estão todos na mesma página, falando sobre a mesma coisa, partindo das mesma premissas e reconhecendo as mesmas limitações. Ainda mais em tempos de cloud, microsserviços, serverless e essa coisa toda.

Entretanto, embora isto deva ser bem óbvio, acho que devo pecar pelo excesso aqui e dizer que não tenho a pretensão de escrever um post que esgote o assunto “confiabilidade” de software e sistemas. Aliás, muito longe disto. A literatura sobre confiabilidade de software e sistemas é vasta e impossível de se cobrir em um post. Eu nem mesmo já consumi toda a literatura de que tenho ciência da existência. Portanto, não assuma que isto é tudo.

A ideia é ser um pequeno aperitivo, que desperte o seu apetite e te leve a buscar por mais.

Confiabilidade de Software

Para começar, então, vamos trazer um pouco de definição à mesa.

Michael R. Lyu, no livro Handbook of Software Reliability Engineering, define confiabilidade de software como sendo:

The probability of failure-free software operation for a specified period of time in a specified environment [ANSI91].

Michael R. Lyu, Handbook of Software Reliability Engineering, page 5. [pdf]

Ele expande ainda um pouco mais esta ideia, logo em seguida, explicando que a confiabilidade de software é um dos atributos da qualidade de software ⎼ que por si só é uma propriedade multidimensional, que inclui outros fatores também ligados à satisfação do cliente, como funcionalidade, usabilidade, performance, suportabilidade, capacidade, instalabilidade, manutenibilidade e documentação.

Martin Kleppmann, no livro Designing Data-Intensive Applications, falando sobre confiabilidade de sistemas de software, diz o seguinte:

The system should continue to work correctly (performing the correct function at the desired level of performance) even in the face of adversity (hardware or software faults, and even human error).

Martin Kleppmann, Designing Data-Intensive Applications, page 6.

Mais adiante, ele fala sobre o que tipicamente se espera de um software ⎼ que ele realize as funcionalidade esperadas pelo usuário; tolere erros cometidos do usuário; tenha desempenho bom o bastante para os casos de uso suportados, dentro do volume de dados esperado; e que previna acessos não autorizados e abusivos. Resumindo, o que ele diz é que o software deve continuar funcionando corretamente, mesmo quando as circunstâncias são adversas.

Enquanto Lyu apresenta 3 pontos importantíssimos para qualquer discussão sobre confiabilidade de software:

– Probabilidade de ausência de falhas;
– Por período específico;
– Em ambiente específico.

Kleppmann fala sobre continuidade de funcionamento correto dos sistemas mesmo quando as circunstâncias não são favoráveis a isto.

Aos sistemas que toleram tais situações adversas, ou falhas, damos o rótulo de “tolerantes à falhas”. Mas isto não significa que sejam tolerantes a todas e quaisquer falhas, porque isto seria absolutamente impossível. Há sempre uma restrição imposta por tempo para se projetar, implementar e testar uma solução, custo de viabilização, habilidade humana para realização e tamanho do retorno sobre todo investimento empregado. Em outras palavras, ter “tudo” nunca é uma opção.

Este é o ponto chave da menção que fiz de Hintjens no início deste post: um sistema tolerante à falhas é um sistema que está preparado para lidar com aquelas falhas que são bem conhecidas e compreendidas, em cujo qual certo esforço foi empregado para prepará-lo para tal. Nem mais, nem menos.

Agora, seja lá qual for a régua que adotemos, a verdade fria da coisa é que a confiabilidade de software é um fator crucial na satisfação do cliente, uma vez que falhas de software podem tornar um sistema completamente inoperante.

E não estou me referindo apenas a sistemas de ultra missão crítica, que podem causar a morte de pessoas, destruir vidas de verdade, como alguns exemplos que Pan oferece em seu artigo, mas de coisas mais mundanas mesmo, como Kleppmann cita em seu livro. Quero dizer, bugs em aplicações de negócio, que fazem seus usuários perder produtividade; indisponibilidades em e-commerces que impedem que vendas sejam concluídas; produtos de software que são vendidos, mas nunca provisionados no prazo prometido; e por aí vai. Você provavelmente deve ter ótimos exemplos muito melhores do que estes.

É claro que há momentos em que, conscientemente, decidimos sacrificar a confiabilidade de um sistema para reduzir seu custo inicial de desenvolvimento, porque estamos, por exemplo, desenvolvendo um protótipo ou MVP, que pode acabar indo para o lixo; ou pode ser o caso de termos que manter o custo total de um produto super baixo, porque sua margem de lucro não justifica nada além do mínimo possível. Ou simplesmente porque aquela funcionalidade incrível, que ninguém pode viver mais um dia sem, era para ontem.

Quem sabe se não é essa tal funcionalidade incrível, ainda que meio bugada, que vai fazer a diferença entre o sucesso ou a ruína de um produto?

Temos que estar realmente muito conscientes das decisões que tomamos, que afetam direta ou indiretamente a confiabilidade dos softwares que de algum modo comercializamos, já que este é um fator tão fundamental à satisfação dos nossos clientes.

Precisamos estar seguros em relação a pelo menos estes seis pontos:

– De onde estamos cortando;
– Porque estamos cortando;
– Por quanto tempo estamos cortando;
– Se é um corte remediável no futuro;
– O quanto o usuário vai sofrer com os cortes;
– E o quanto estamos ganhando com tudo isto.

Não se pode ter tudo. Mas pode-se ter consciência sobre o que não se tem e suas consequências imediatas e futuras.

A triste realidade de software

Diferente de bens materiais, como um carro, uma torneira, uma fotocópia, ou um equipamento eletroeletrônico qualquer, um software não envelhece, não enferruja, não se desgasta e perde funcionalidade com o tempo. Dado que todas as condições externas ao software, às quais ele depende, sejam exatamente as mesmas, não importa quantos anos de existência tenha uma determinada versão do software, ela vai funcionar tão bem (ou tão mal) quanto da primeira vez. Nhmmmm, sort of…

A verdade deprimente é que softwares que rodam continuamente por longos períodos de tempo, fazendo qualquer coisa minimamente importante para alguém, ainda que sob as mesmas [supostas] condições de ambiente nos quais estão inseridos (hardware, sistema operacional, rede, etc), com o tempo, vão se degradando, porque estas [supostas] condições externas vão se alterando e assim também suas próprias condições internas, ainda que seu código fonte ou mesmo binário permaneçam absolutamente inalterados.

Daí a importância de se ter um time de operação capacitado, munido com ferramentas de gestão de configuração, monitoria, telemetria e todo o mais possível.

Isto é, tanto quanto o conteúdo do código fonte mantém-se intacto quando este é submetido à execução, também a sua qualidade permanece a mesma. O que significa que, quanto menor a qualidade do código fonte, maior a probabilidade de seu estado em execução se degradar em um menor espaço de tempo e resultar em incidentes em produção ⎼ o que, em última análise, se traduz em cliente insatisfeito e imagem da organização arranhada.

E isto não é tudo. Em um ensaio sobre confiabilidade de software da Carnegie Mellon University, Jiantao Pan escreve que a complexidade de um software está inversamente relacionada à sua confiabilidade; quanto maior sua complexidade, menor sua confiabilidade. Já a relação entre complexidade e funcionalidade tende a ser causal; quando maior o número de funcionalidades, maior sua complexidade.

Lembra-se da máxima de que menos é mais? E daquela estimativa de que 80% dos usuários usam apenas 20% das funcionalidades? Pois é, chunchar funcionalidades para competir pode ser não apenas uma estratégia ineficaz, como também um ofensor da confiabilidade do sistema como um todo.

Diferentemente do que acontece com bens materiais, como disse há pouco, que vão se deteriorando e sofrendo aumento na ocorrência de falhas ao longo de sua vida útil, softwares tendem a ter maior ocorrência de falhas em sua fase inicial e muito menos em sua fase de obsolescência.

Fonte: https://www.beningo.com/understanding-embedded-system-failure-rates/

Note que o que causa aumento da chance de falhas, com efeito levemente residual, é justamente a implantação de novas versões; em especial, se elas trouxerem consigo novas funcionalidades. Não que esta informação deva nos deixar acanhados de publicar novas versões, absolutamente. O que devemos, sim, é não ignorá-la. Precisamos ser mais responsáveis com o que publicamos em produção, investindo tempo em testes melhores, detectando falhas mais rapidamente e oferecendo maneiras de revertê-las o quanto antes.

A bem da verdade, até mesmo novas capacidades que visam aumentar a confiabilidade podem causar novas falhas. Senão por falhas no código em si, resultado do novo ciclo (seja ele de um dia ou um mês) de projeto, implementação e teste, pelo simples fato do ambiente sistêmico de produção não ser exatamente o mesmo de desenvolvimento. Eles podem até ser muito, muito, semelhantes um ao outro, mas frequentemente não são o mesmo. Muitas vezes, o ambiente de produção de ontem nem mesmo é o de hoje. Quem dirá, o de uma semana atrás.

Dispositivos móveis são um ótimo exemplo disto. Você nunca tem certeza sobre o estado que vai estar o dispositivo móvel quando seu aplicativo for instalado. Isso sem falar em sistemas embarcados.

Outro exemplo é o caso de softwares que compõem um sistema distribuído. Uma nova versão de um software coincide com uma nova versão de outro software, que torna-os de algum modo conflitantes e incompatíveis. Pau!

O fator “pessoas”

Eu acho um baita clichê quando dizem que tudo é sobre pessoas; ou alguma variação disso, com o mesmo significado. Mas no final das contas, a verdade é que é isso mesmo.

As pessoas projetam expectativas. As pessoas fazem promessas. As pessoas não conseguem cumprir suas promessas. As pessoas sequer conseguem fazer as coisas direito 100% do tempo. Porque no final das contas, como dizem, isto é ser humano, não é? É, pois é.

Em seu ensaio sobre confiabilidade de software, Pan faz referência ao paper de Peter A. Keiller e Douglas R. Miller, intitulado On the use and the performance of software reliability growth models, e escreve que falhas de software podem ser decorrente de erros, ambiguidades, omissões ou má interpretações da especificação; podem ser também descuido ou incompetência na escrita do código, teste inadequado, uso incorreto ou inesperado do software; ou outros problemas imprevistos. Em resumo, pessoas sendo pessoas.

E a despeito dele ter escrito isto em 1999, mesmo com o posterior advento do desenvolvimento de software ágil, ainda não erradicamos os fatores causadores de “falhas de software”. Diminuímos, sim, mas não eliminamos. Talvez porque, como ele diz, eles estejam intimamente relacionados a fatores humanos confusos e ao processo de projeto da coisa que estamos construindo, os quais ainda não temos um entendimento sólido. Pessoas, right?

O guard-rail

Se você chegou até aqui, talvez esteja se perguntando: se não dá para erradicar completamente, tem que dar ao menos para controlar a magnitude, mitigar de alguma maneira, certo?

Sim, certo. Nem tudo está perdido. Já vimos algumas dicas ao longo do caminho.

Em muitos casos, com processos de desenvolvimento sólidos, com ciclos curtos de projeto, implementação e teste; com práticas de engenharia cínicas, que sempre esperam pelo pior; com engenheiros de qualidade que caçam pêlo em ovo; com processos de governança super defensivos; e com real atenção à operação desde a concepção do que se está construindo.

Em outros casos, sentando e chorando. Okay, este último não é exatamente uma opção.

Ciclos menores

Promover ciclos menores de “concepção à produção” é uma ótima prática para se adotar, se não por tudo que vimos até aqui (especialmente a questão dos pacotes novo em produção), porque as pessoas tem limiares de atenção diferentes. Mas não é só isso.

Muitas vezes, a velocidade do negócio e suas incertezas nos obrigam a mudar de foco antes de conseguirmos concluir uma determinada atividade e isto é super frustrante, mesmo que você tente entrar naquele estado mental de “estamos fazendo isso pelo negócio”, “este é o melhor a se fazer”, “estamos aqui pelo cliente”. Yeah, I get it. Mas ainda assim é frustrante. Como seres humanos nos sentimos frustrados de começar algo e não concluir, seja por desinteresse momentâneo ou por força maior. Então, o quanto antes concluirmos, melhor.

Então, quanto menores? Tão pequenos quanto o suficiente para se fazer um bom projeto, implementação limpa e testes de verdade. Em alguns casos, tudo isto pode acontecer em horas; em outros, pode levar semanas. O importante é que se saiba bem o que se está programando e como testar que tudo está saindo conforme o esperado.

Quebrar grandes requisitos em diversos requisitos menores, que vão se complementando, é um caminho para se ter ciclos menores. Com certeza, é um bom começo.

Transparência

Aqui me refiro à transparência do software rodando em produção, como ensina Michael T. Nygard, em Release It, na página 226.

Nygard diz que um sistema sem transparência não pode sobreviver por muito tempo em produção. Ele diz que se os administradores do sistema não sabem o que os componentes do sistema estão fazendo, eles não podem otimizar este sistema. Bem, seria muito perigoso mexer no que não se tem controle. E não se pode ter controle do que não se faz a menor ideia.

Se os desenvolvedores não sabem “o que funciona” e “o que não funciona” em produção, eles não podem aumentar a confiabilidade e resiliência do sistema ao longo do tempo.

E quanto aos sponsors de negócio? Se eles não sabem se eles estão ganhando dinheiro com o sistema, eles não podem investir em trabalho futuro de melhoria, etc.

Ele conclui, então, em tom meio apocalíptico, penso eu, dizendo que um sistema sem transparência vai seguir em decadência, funcionando um pouco pior a cada nova versão.

Segundo Nygard ⎼ e tendo a concordar fortemente, depois de anos e anos escrevendo software e mantendo-os em produção ⎼, sistemas que amadurecem bem são sistemas que oferecem algum grau de transparência.

elegÂnCIA

Vimos que não é possível um sistema ser tolerante a toda e qualquer falha possível e imaginável. Devemos priorizar de modo consciente quais falhas toleraremos, para mantermos o funcionamento correto do sistema para o usuário final, se possível, sem que sequer se perceba que houve algo de errado.

Reliability means making systems work correctly, even when faults occur. Faults can be in hardware (typically random and uncorrelated), software (bugs are typically systematic and hard to deal with), and humans (who inevitably make mistakes from time to time). Fault-tolerance techniques can hide certain types of faults from the end user.

Martin Kleppmann, Designing Data-Intensive Applications, page 22.

Mas haverá momentos, como já vimos, em que não será possível manter funcionalidades completas do sistema diante de certas falhas, seja por decisão ou impossibilidade técnica. Nestes momentos, precisaremos recorrer a outros artifícios, se não quisermos torturar nosso cliente com tanta insatisfação. Graceful Degradation é um desses artifícios, mas ele não vem “de graça”.

One approach to achieving software robustness is graceful degradation. Graceful degradation is the property that individual component failures reduce system functionality rather than cause a complete system failure. However, current practice for achieving graceful degradation requires a specific engineering effort enumerating every failure mode to be handled at design time, and devising a specific procedure for each failure [Herlihy91].

Charles P. Shelton and Philip Koopman, Developing a Software Architecture for Graceful Degradation in an Elevator Control System. [pdf]

A “degradação elegante” de um sistema, chamemos assim, é um atributo que às vezes é confundido com a tolerância à falhas, mas há diferença entre eles.

Enquanto a tolerância à falhas diz respeito a lidar com componentes falhos do sistema, fazendo algum tipo de substituição, alguma manobra, que não cause degradação da experiência do usuário e continue a prover as funcionalidades esperadas, a degradação elegante, é a última instância do gerenciamento eficaz de falhas, quando a falha em componentes do sistema chega a um ponto em que não é mais possível manter as funcionalidades completas, com desempenho adequado, mas apenas parte delas, visando sobretudo evitar falhas generalizadas.

The purpose of graceful degradation is to prevent catastrophic failure. Ideally, even the simultaneous loss of multiple components does not cause downtime in a system with this feature. In graceful degradation, the operating efficiency or speed declines gradually as an increasing number of components fail.

Graceful Degradation, TechTarget. [link]

Então, quando tudo for inevitavelmente para o despenhadeiro, porque o seu sistema chegou ao limite do quão confiável foi preparado para ser, tente ao menos ser elegante.

Autor: Leandro Silva

I do code for a happy living.

Deixe um comentário

Preencha os seus dados abaixo ou clique em um ícone para log in:

Logotipo do WordPress.com

Você está comentando utilizando sua conta WordPress.com. Sair /  Alterar )

Foto do Google

Você está comentando utilizando sua conta Google. Sair /  Alterar )

Imagem do Twitter

Você está comentando utilizando sua conta Twitter. Sair /  Alterar )

Foto do Facebook

Você está comentando utilizando sua conta Facebook. Sair /  Alterar )

Conectando a %s